Genetic screens identify a context-specific PI3K/p27Kip1 node driving extrahepatic biliary cancer


Chiara Falcomata(link is external)Stefanie Bärthel(link is external)Angelika Ulrich(link is external)Sandra Diersch(link is external)Christian Veltkamp(link is external)Lena Rad(link is external)Fabio Boniolo(link is external)Myriam Solar(link is external)Katja Steiger(link is external)Barbara Seidler(link is external)Magdalena Zukowska(link is external)Joanna Madej(link is external)Mingsong Wang(link is external)Rupert Ollinger(link is external)Roman Maresch(link is external)Maxim Barenboim(link is external)Stefan Eser(link is external)Markus Tschurtschenthaler(link is external)Arianeb Mehrabi(link is external)Stephanie Roessler(link is external)Benjamin Goeppert(link is external)Alexander Kind(link is external)Angelika Schnieke(link is external)Maria S Robles(link is external)Allan Bradley(link is external)Roland M Schmid(link is external)Marc Schmidt-Supprian(link is external)Maximilian Reichert(link is external)Wilko Weichert(link is external)Owen J Sansom(link is external)Jennifer P Morton(link is external)Roland Rad(link is external)Gunter Schneider(link is external)Dieter Saur(link is external)

. 2021 Jul 19;candisc.0209.2021.

 doi: 10.1158/2159-8290.CD-21-0209.

Abstract: 

Biliary tract cancer ranks among the most lethal human malignancies, representing an unmet clinical need. Its abysmal prognosis is tied to an increasing incidence and a fundamental lack of mechanistic knowledge regarding the molecular basis of the disease. Here, we show that the Pdx1-positive extrahepatic biliary epithelium is highly susceptible towards transformation by activated Pik3caH1047R, but refractory to oncogenic KrasG12D. Using genome-wide transposon screens and genetic loss-of-function experiments, we discover context-dependent genetic interactions that drive extrahepatic cholangiocarcinoma (ECC) and show that PI3K-signaling output strength and repression of the tumor-suppressor p27Kip1 are critical context-specific determinants of tumor formation. This contrasts the pancreas, where oncogenic Kras in concert with Trp53-loss are key cancer-drivers. Notably, inactivation of p27Kip1 permits KrasG12D-driven ECC development. These studies provide a mechanistic link between PI3K-signaling, tissue-specific tumor suppressor barriers, and ECC pathogenesis, and present a novel genetic model of autochthonous ECC and genes driving this highly lethal tumor-subtype.